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Anomalous scaling of a passive scalar advected by the turbulent velocity field
with finite correlation time: Two-loop approximation
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The renormalization group and operator product expansion are applied to the model of a passive scalar
quantity advected by the Gaussian self-similar velocity field with finite, and not small, correlation time. The
inertial-range energy spectrum of the velocity is chosen in the B¢k) k!~ 2¢, and the correlation time at
the wave numbek scales ak 2" 7. Inertial-range anomalous scaling for the structure functions and other
correlation functions emerges as a consequence of the existence in the model of composite operators with
negative scaling dimensions, identified with anomalous exponentsyFer, these exponents are the same as
in the rapid-change limit of the model; fay<e, they are the same as in the limit of a time-independent
(quencheyl velocity field. Fore= 7 (local turnover exponeitthe anomalous exponents are nonuniversal
through the dependence on a dimensionless parameter, the ratio of the velocity correlation time, and the scalar
turnover time. The nonuniversality reveals itself, however, only in the second order ofetkgansion and the
exponents are derived to ordet, including anisotropic contributions. It is shown that, for moderate order of
the structure functiom, and the space dimensionalitly finite correlation time enhances the intermittency in
comparison with both the limits: the rapid-change and quenched ones. The situation changesawtiend
become large enough: the correction to the rapid-change limit due to the finite correlation time is (fthsitive
is, the anomalous scaling is suppregséds maximal for the quenched limit and monotonically decreases as
the correlation time tends to zero.
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I. INTRODUCTION field advected by a velocity with given statistics, closed
equations can be derived only for different-time correlation
In recent years, considerable progress has been achievéthctions and they involve infinite diagrammatic seyies
in the understanding of intermittency and anomalous scaling One may thus conclude that breaking the artificial as-
of fluid turbulence. The crucial role in these studies wassumption of the time decorrelation of the velocity field is the
played by a simple model of a passive scalar quantity aderucial point[10,11].
vected by a random Gaussian field, white in time and self- An important issue related to the effects of the finite cor-
similar in space, the so-called Kraichnan's rapid-changeelation time is the universality of the anomalous exponents.
model[1]. There, for the first time the existence of anoma-It was argued that the exponents may depend on more details
lous scaling was established on the basis of a microscopiaf the velocity statistics than only the exponenisand
model[2], and the corresponding anomalous exponents wergl2]. This idea was supported in Refsl3,14], where the
calculated within controlled approximatiof3-6] and a sys- case of short but finite correlation time was considered for
tematic perturbation expansion in a formal small parametethe special case of a local turnover exponent. In those stud-
[7]. Detailed review of the recent theoretical research on thées, the anomalous exponents were derived to first order in
passive scalar problem and the bibliography can be found ismall correlation time, with Kraichnan’s rapid-change model
Ref.[8]. [13] or analogous shell model for a scalar fi¢ldl] taken as
Within the approach developed in Ref8—6], nontrivial ~ zeroth-order approximations. The exponents obtained appear
anomalous exponents are related to “zero modes,” that isponuniversal through the dependence on the correlation time.
homogeneous solutions of the closed exact differential equa- In Ref.[7] and subsequent papgdb—19, the field theo-
tions satisfied by the equal-time correlation functions. In thisretic renormalization grougRG) and operator product ex-
sense, the rapid-change model appears “exactly solvable.” pansion(OPE were applied to the rapid-change model and
In a wider context, zero modes can be interpreted as stats descendants. In that approach, anomalous scaling emerges
tistical conservation laws of the particle dynamj€8. The  as a consequence of the existence in the model of composite
concept of statistical conservation laws appears rather gemperators with negative scaling dimensions, identified with
eral, being also confirmed in numerical simulations by Refsthe anomalous exponents. This allows one to construct a sys-
[10,11], where the passive advection by the two-dimensionatematic perturbation expansion for the anomalous exponents,
Navier-Stokes velocity fiell10] and a shell model of a pas- analogous to the famous expansion in the RG theory of
sive scalaf11] were studied. This observation is rather in- critical behavior, and to calculate the exponents to the second
triguing because in those models no closed equations fdi7,15] and third[16] orders. For passively advected vector
equal-time quantities can be derived due to the fact that théelds, where the calculations become rather involved, the
advecting velocity has a finite correlation tirffer a passive exponents for higher-order correlation functions were de-
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rived by means of the RG techniques to the leading order ifiormulation, the RG and OPE approach to the model, and the
e in Refs.[17]. O(¢) result for the anomalous exponepis]. The results of
Besides the calculational efficiency, an important advanthe two-loop calculation are presented and discussed in Sec.
tage of the RG approach is its relative universality: it is notlV: in Sec. IV A, we give the anomalous exponents to order
related to the aforementioned solvability of the rapid-changé(e?) and then discuss them separately for the isotropic
model and can also be applied to the case of finite correlatiofSec. IV B and anisotropi¢Sec. IV Q contributions.
time or non-Gaussian advecting field. In REf8] (see also The main conclusion of the paper can be formulated as
Ref.[19] for the case of compressible flpwhe RG and OPE  follows: the qualitative effect of the finite correlation time on
were applied to the problem of a passive scalar advected bjpe anomalous scaling depends essentially on the correlation
a Gaussian self-similar velocity with finiteand not smajl  function considered, the value of and the space dimension-
correlation time. The energy spectrum of the velocity in theality d. For the low-order structure functions and in low di-
inertial range has the forr&(k) k=22, while the correla- mensions =2 or 3, the inclusion of finite correlation time
tion time at the wave numbek scales ak 2"7. It was enhances the intermittency in comparison with both the lim-
shown that, depending on the values of the exponermstsd  its: the time-decorrelatedu) and time-independentu(
n, the model reveals various types of inertial-range scaling=0) ones. Although the anomalous exponents have well-
regimes with nontrivial anomalous exponents. Fgr e, defined limits foru—0, they show interesting irregularities
they coincide with the exponents of the rapid-change modeh the vicinity of the quenched limit: a rapid falloff when

and depend on the only parameter-27, while for e> 7 =0 increases from zero, with infinite slope fo+ 2, with a
they coincide with the exponents of the oppositepronounced minimum fou~1. On the contrary, the behav-
(“quenched” or “frozen”) case and depend only en ior in the region of larges is smooth, like for the shell model

The most interesting case ig=e, when the exponents studied in Ref[14]. For higher-order structure functions and
can be nonuniversal through the dependence on the correllarged, the anomalous scaling is always weaker in compari-
tion time (more precisely, on the ratio of the velocity cor- ~ son with the rapid-change limit and the correspondingsi-
relation time and the turnover time of the passive sgalar  tive) correction is maximal fou=0 and monotonically de-
the field theoretic language, the nonuniversality of the expocreases to zero astends to infinity.
nents in this regime is a consequence of the degeneracy of

the corresponding fixed point of the RG equations. It agrees Il. THE MODEL
with the findings of Refs[13,14] since the borderliney '
=g, including the “Kolmogorov” point n=¢=4/3, corre- The advection of a passive scalar fiedix)= 6(t,x) is

sponds to the case of a local turnover exponent. It is alsdescribed by the stochastic equation

interesting to note that the same relatips ¢ for the bound-

ary between the time-decorrelated and quenched cases is en- V.0=ved%0+f, V,=d,+vid, (2.9
countered in a model of passive advection by a strongly an-

isotropic flow, studied in Refs[._ZO]. It was argue_d in Ref. \where d=alot, 9,=0ldx;, vo is the molecular diffusivity
[21] that the same boundary WI|| be qb;erved with very gencoefficient, 42 is the Laplace operatov(x)={v;(x)} is the
eral assumptions on the velocity statistics. Although the POSgivergence-free(owing to the incompressibility velocity

sibility of the nonuniversality of anomalous exponents forfjg|q, andf=f(x) is an artificial Gaussian random noise with
n=¢ was demonstrated by the rigorous RG analysis, th&erg mean and correlation function

practical calculation by Ref18] has shown that they appear
universal(independent ofl) to the first order ire and »: in FOOf (X)) =C(t—t', 1)
the one-loop approximation, the anomalous dimensions of o
the relevant composite operators depend on a combination
the model parametergcouplings that remains constant
along the line of the fixed points. This fact is rather disap-

pointing because it means that in the one-loop approximatio :
it is impossible to judge how the finite correlation time af- steady state O.f the system andpfdepends on the vector
and not only its modulus=r, is a source of large-scale

fects intermittency, in particular, whether the anomalous” . L : S
anisotropy. In a more realistic formulation, the noise is re-

f;:ilgjghlasnggh;ngﬁgng;‘]:éj ﬁﬁ:ﬁ:sed In comparison with thplaced by an imposed constant gradient of the scalar field;
) see, e.g., Ref$5,6,18,19,22

In this paper, we present the anomalous exponents to o N - .
2 _ Lot ; . In the real problem, the velocity field satisfies the Navier-
derO(&*) (two-loop approximationfor the most interesting Stokes equation. Following Ref§l4,18,19.22 we assume

casen=g¢, including the exponents of the anisotropic con- : . S .
tributions, and study their dependenceoiflt is not neces- ]:aor: dvf:)(())rrlenlaEtgf (2.1) a Gaussian distribution with zero mean

sary to separately consider the casese (7<e), because
the corresponding exponents are the same as for the rapid-

r=x—x. (2.2

Cffhe form of the correlator is unessential; it is only important
that the functionC in Eqg. (2.2) decreases rapidly far>L,
thereL is some integral scale. The noise maintains the

change(quenchedl velocity field and can be obtained from Sy dk ,
the casep=e¢ in the limitsu—o (u—0)]. (vix¥)v;(x")) = 3 Pii(D,(t=t"k)
. o . (2m)
In Sec. I, we describe our model and its interesting spe-
cial cases. In Sec. lll, we briefly recall the field theoretic xXexdik-(x—=x")], (2.3
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where Pij(k)zéij—kikj/k2 is the transverse projector and where 6’ is an auxiliary scalar field an®; and D, are
the functionD ,(t,k) will be chosen in the form correlators(2.2) and(2.3), respectively. In Eq(3.1), all the
required integrations over= (t,x) and summations over the

.. Do 1 , vector indices are understood.
D,(t—t" k)= 2Ug kd-2+25 exd — e (t=t")], The model(3.1) is logarithmic fore = 7=0; the ultravio-
let (UV) singularities have the form of poles in various linear
W =Ugry k27, (2.4) combinations ofe and #» in the correlation functions. They

can be removed by the only counterterm of the fatta?6,
HereD, andu, are positive amplitude factors and the posi- which is equivalent to the following multiplicative renormal-
tive exponentse and # play the part of small expansion ization of the parameterg,, uy, andw, in the action func-
parameters in the RG theory; see Rdfs8,19. It is also  tional (3.1):
convenient to introduce the “coupling constanty, oot
=D,/ v§ (expansion parameter in the ordinary perturbation vo=vZ,, Go=9gu~*"" Zg, Up=up” Z,, (3.2
theory). The infrared(IR) regularization is provided by the
sharp cutoff in all momentum integrals from below lat
=m with m~1/L.

As was pointed out in Ref22], the Gaussian modé2.3),
(2.4) suffers from the lack of Galilean invariance and there-
fore does not take into account the self-advection of turbu
lent eddies. It is well known that the different-time correla-
tions of the Eulerian velocity field are not self-similar, as a
result of these “sweeping effects,” and depend substantiall
on the integral scale; see, e.g., ReX3]. It would be much
more appropriate to use Eq.3 and(2.4) in the Lagrang-
ian frame, but this is embarrassing due to the daunting task

whereg, u, and v are the renormalized counterparts of the
bare parameterg is the reference mass in the minimal sub-
traction(MS) scheme, which we always use in practical cal-
culations; andZ;=Z7;(g,u;d;e,n) are the renormalization
constants satisfying the identities

2,=2,°, Z2,=Z,". (3.3

Yixed points of the corresponding RG equations are found
from the requirement that the functions,

of relating Eulerian and Lagrangian statistics for a flow with Be=D,9=0[—2e=n+3y,],
a finite correlation tim&which is not a problem for the zero ~ ~
correlation time limil. However, the results of Ref22] Bu=Dyu=u-n+vy,], v,=D,nZ, (3.9

show that the Gaussian model gives reasonable description 5

of the passive advection in an appropriate frame, where theanish. HereD,, is the operationu.d,, for fixed bare param-

mean velocity field vanishes. To justify the mod@.3), eters and the relations betwegnfunctions and the anoma-

(2.4), we also note that we shall be interested preferably idous dimensiony, result from the definitions and the relation

the equal-time, Galilean invariant quantitiesructure func- (3.3

tions), which are not affected by the sweeping, and we ex- The exact relation3y,/g—38,/u=2(n—¢), following

pect that their absence in the Gaussian model is not crucialtom Eg. (3.4), shows that the3 functions cannot vanish
The modek2.3), (2.4) contains two special cases that pos-simultaneously for finite values of their arguments, except

sess some interest on their own: in the limg—o, g)  for the casep=¢. Therefore, to find the fixed points we

EgO/U(Z):COnSt we arrive at the rapid-change model, must set eithes=o or u=0 and simultaneously rescatg
so that the anomalous dimensign remain finite. These two
D,(w,k)—ggvg S(t—t' )k 972t (2.5 options correspond to the two limit.5 and (2.6), so that

_ o , the rapid-change and quenched cases are fixed points of the
while the limituy— 0, go=go/2uo= const corresponds to the general model. The analysis shows that the former is IR
case of a quenchedime-independentvelocity field, stable(and thus describes the inertial-range asymptotic be-

o havion for »>¢, while the latter is IR stable fop<e.
v 2 —d+2-26
Dy(w,k)=gor5 K : (2.6 The most interesting case is=&, when theB functions

The latter case has a close formal resemblance with the welR€COMe proportional and the sgy=4,=0 reduces to a

known models of random walks in random environment withSlrlgle equation. As a result, the corresponding fi)ged poir_1t Is
long-range correlations; see Refg4,25 degenerate: rather than a point, one obtains a line of fixed

points in theg-u plane. They can be labeled by the value of
the parameten, which has the meaning of the ratio of the
velocity correlation time and the scalar turnover time.
Existence of the IR stable fixed points implies certain
The RG theory of the moddR.1)—(2.4) is presented in scaling properties of various correlation functions at scales
Refs.[18,19 in detail: below we briefly recall only the nec- larger than the dissipative lengthg, * . In particular, for
essary information. The stochastic probléthl)—(2.4) can  the equal-time structure functions

be cast as a field theory with action functional

IIl. RENORMALIZATION GROUP AND OPERATOR
PRODUCT EXPANSION

1 Sa(n)=([o(t,x)—6(t,x")]"), r=x—x', (3.9
S(6,6",v)=—VvD, /24 6'D0' 12+ 6'[ — V+ v45°] 9,
(3.1)  one obtains
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Sn(r)zDg”’zr”(l‘s’z)Fn(mr) (3.6)  turbation theory(for zero correlation time, many diagrams
contain closed circuits of retarded propagators and vanish
(odd structure functions are nontrivial if the correlation func-Second, and the more important distinction, is that the dia-
tion (v f) is nonzero or if a constant gradient of the scalargrams for the finite correlated case involveo different dis-
field is imposedl In the presence of anisotropy the scaling persion laws:wsk? for the scalar andvck?~ 7 for the ve-
functionsF,(mr) can be decomposed into irreducible repre-|ocity fields. As a result, the calculation, as well as
sentations of the S@) group. In the simplest case of expressions for the renormalization constants, become rather
uniaxial anisotropywhich is sufficient to reveahll anoma- - ;mbersome already in the lowdshe-loop approximation;
lous exponenjsone can write see Refs[18,19.
F,(mr)=P,(2)F,(mr), z=(n-r)r, 3.7) The Iatt_er difficulty can be circumvented as follows. Care-
ful analysis shows that in the MS scheme all the needed
where P,(z) is thelth order Gegenbauer polynomidleg- anomalous dimensions,y, from Eqg. (3.4 and vy,
endre polynomial fod=3) andn is a unit vector that deter- =D,InZ,, in contrast to the respective renormalization con-

mines the distinguished direction. stantsZ, andZ,,, are independent of the exponentand 7
The leading behavior of the functioms,, for mr<1 (in-  in the two-loop approximatiofifor the one-loop approxima-
ertial rang¢ is found from the corresponding operator prod- tion this is obvious from the explicit expressions; see Refs.
uct expansion and has the form [18,19). It is thus sufficient to calculate them for any spe-

cific choice of the exponents and » that guarantees UV
finiteness of the diagrams. The most convenient choicg is
=0 and arbitrarye: all the diagrams remain finite, the ex-
ponents in the aforementioned dispersion laws become iden-
tical, and the practical calculations drastically simplify and
become feasible.
To avoid possible misunderstandings, it should be empha-
sized that such an independenceni®t guaranteed by the
3 6---9,0 (3,00,0)P+---, n=l+2p. (3.9 renormalizability of the model. The renormalizability in the
! ! analytic regularization only guarantees that the renormaliza-
Here the dots stand for the appropriate subtractions involvin§fon scheme can be chosen such that the correlation func-
the Kroneckers symbols, which ensure that the resulting tions, along with the coefficients and y in the RG equa-
expressions are traceless with respect to any given pair ¢fons, will be analytic at the origin in the space of two
indices, for exampleg, 69;6— &;,0d,0/d. We also note complex variables and» [26]. We used another scheme in
that the numbers and| necessarily have the same parity, Which the functionsg and y areindependenbf & and 7 in
that is, they can only be simultaneously even or odd. the first two orders, which does not excludenanalyticde-
For the most interesting case of the degenerate fixe@endence on these parameters in higher orders. We expect
point, the dimensiond , are calculated in the form of series that in the three-loop approximation nonanalytic construc-

in the only independent exponest 7, that is, tions such as £+ 7)/(e+27) will indeed appear in the
anomalous dimensions, in particular, due to the necessity to

take into account UV finite parts of the two-loop diagrams

Fpioc(mr)Ani, (3.9

where the “anomalous exponent,, is nothing other than
the critical dimension of the irreducible traceldsh rank

tensor composite operator built of fields # and minimal

possible number of derivativgé$8]. Forl<n such an opera-
tor has the form

[

Am:Zl ek Al (3.10  (with our choice of the sharp IR cutoff in Edq2.4), the
- one-loop diagrams have no UV finite parts; £6] for the
In the lowest order one obtaif&8] rapid-change cage .
Thus, we conclude that the knowledge of the renormaliza-
" n(n—2)(d—1)+x(d+1) tion constants fom=0 is sufficient to obtain the anomalous
nl = — + 311 dimensions B functions, coordinates of the fixed points, and
2(d—1)(d+2)

the critical dimensions of composite operators for arbitrary
with \;=I(d+1—2). Fork=2, the coefficients&n'? depend values of » and e, including the most interesting casg
not only ond but also on the parameter the ratio of the =¢&, which we always discuss from now on.
velocity correlation time, and the scalar turnover time, which
labels fixed points in thg-u plane(see above

The reader not interested in the details of practical calcu- |v. ANOMALOUS EXPONENTS IN THE TWO-LOOP

lation can skip the end of this section and pass to the result APPROXIMATION
for A(2). Calculation of the higher-order coefficients in the
expansions for the rapid-change model is presented in Refs.
[15,164 in detail. Analogous calculations for the finite corre-  We have performed the complete two-loop calculation of
lated case are more difficult in two respects. First, there aréhe RG functiong3.4) and the critical dimension.10 of
more relevant Feynman diagrams in the same order of pethe composite operato(8.9) for arbitrary values of, I, d,

A. General expressions
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andu and obtained the following expression for the second The quantity7(u,d) in Eqg. (4.2a can only be expressed

coefficient in expansiori3.10):

1
(d—1)%(d+2)%(d+4)
X(2(d+4)An(n—2)(d—1)+\]
+(n—=2){6B[n(n—4)(d—1)+3\]
+9C[n(d+n)(d=1)—N\(d+ 1)1}

A(Z)_

(4.2
with A =1(d+1—-2). Here and below we denote

B (u=1—1/u)(d+1)
2(d+2)(1—u)

(d+1)

2(d+4)(1—u)u(1+u)?
2ud(d+2)

T—da-u

o
*\ (u+1)2

J(u,d), (4.2a

o (d+1)
 3(1-u)2(d+4)

1
2(u+1)

g

=
ut+1 3

1 2

_(u+1)2F3 (U+1)2

1 3u2(d—1)F (3)
C9(1-uw?| 4 cl4

u[2d—1+u(d—2)]
a (u+1)

1 u

_ZF3

., (4.2b

1
2l2(u+1)

1

[d+1+2u(d—2)]
+ 2
(u+1)2

(u+1)2

u?(d+1)
-~ (d+4)

A4

Au(d+1) ( 1
T urn@ra 3l 20

| A(d+1)
(u+1)2%(d+4)

1
3 (u+1)2

] . (4.29

We also have denoteH, (x)=F(1,1;d/2+k;x) for the hy-
pergeometric series

. ab (a+1)b(b+1)( )
F(a,b,C,Z)=1+? Z+W 21

The values of entering into Eq(4.2) can be related by the
recurrent relation

(X—1)Fx(x)=x(d+2)F5(x)/(d+4)—1,

in the form of a single convergent integral, suitable for nu-
merical calculation,

Aud) r'(d/2) fld (1—2z%)¥2
u,d)= z ——
Jr TId=1)/2] Jo = (u—1)2+4uz?
><[22(1—22)In<1;—u)—z(u—1+222)arcsinz
- z(1-22)Yq1-u—2%)
[2(1+u)—2]*?
__5271/2
xarctar{z[z(lJru) a H (4.3
(1+u—2%)
wherel'(- - -) is the Eulery function.

The quantitieg4.2), and hence the dimensiof%.1), have
finite limits for u— andu—0. In the first limit, A% co-
incides with the known result for the Kraichnan’s rapid-
change mode{see Ref[7] for =0 and 2 and Ref{15] for
generall). The O(1/u) correction to the rapid-change limit
can be found from the following asymptotic expressions for
the coefficientg4.2):

_(d+1) ,
= 2(d+2) (1+2/u)+0(1u9), (4.48
(d+1) ( ) ,
5= 12(d+4) (1+2/u)+0O(1u%), (4.4bH
(d=1) (1| (d+1) 1
C:[_ 2 " ( ) od+a)" (Z”
1} (d-1) (1) 2(d+1)
W~ F 9(d+4)
1} (d-2) )
XFg| 7|+ —g—|TOA). (4.40

The opposite case,=0, corresponds to the quench@idne-
independentvelocity field. This case was extensively stud-
ied in connection with the so-called “random-random
walks” (random walks in random environmejjtsee the re-
view paper[24] and references therein. Our results for the
function 84 from Eq.(3.4) and the corresponding fixed point
are in agreement with the two-loop results quoted in Ref.
[24] for the model of random-random walks. To our knowl-
edge, the dimensions of composite operat8:9) have not
been studied in that context, and below we give the
asymptotic expressions for the coefficieds?) sufficient to

but the resulting expressions look more cumbersome and wiind the dimensions(4.1) up to order O(u) near the

shall keep both-, andF; in the formulas.

quenched limit:
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(d+1)(3d+4) { (3d+2) 2 It then follows that for larged, the dimensior(4.1) behaves
== —0————+U( - asO(1/d?) and is completely determined by the only contri-
2d(d+2) 2d(d=2) d(d+2) b tion with the coefficient. This gives
In2 (d+3) (1) 2(d+3) (n—2)(n—1)(u+2)(3u+2)
+ + Fias|————, (45 (2)= 3
(d+4) (dra)(d+6) 42 graz| AG T +O(Ldd). (4.7)

The general expressiortd.1), (4.2) are rather cumbersome,

1 = (E) + 4 and in the subsequent sections we shall separately discuss
(d+4) %\ 2] " d(d+2) isotropic contribution(evenn, 1=0) and anisotropic ones
(45D (generaln, 1 #0).

(@D ud)
~T3di2 " 3

(d+1)(d>+4) u 1\ 4(d+1) 1 B. Isotropic sectors
~ T 9d(d+2) +§{(1_2d)F2 2/ " dra F3(§> Expression(4.1) simplifies for the most important case of
5 the isotropic sectofevenn andl=0),
A(d+1)(d+2) 2(d%+2d+4)
T A2 T @v2 |’ (4.5 n(n—2)

2)_
A=

(d—1)(d+2)%(d+4)
up to corrections of orde®(u?).

It is worth noting that theD(u) terms in Eqs(4.59 and X{2(d+4)A+6(n—4)B+9(d+n)C}. (4.8
(4.50 contain poles in d—2) and thus diverge fod=2.

. . (2): . .
Analysis shows that, fod=2, the leading correction to the Equation(4.8) gives A5 =0 in agreement with the exact

o o result A,,=0 [18]. This means that the second-order struc-
result foru=0 is not analytical iru and has the fornu In u. L .
ture function is not anomalous. The formal proof is based on

Formally, the singularity atl=2 is explained as follows. . : ) . .
Some 03; the two-?oop d)i/agrams contari)n “energy denomina-certam Schwinger equation, which has the meaning of the

tors” of the form (k+q)2+ O(u), wherek andq are two energy conservation law; it is almost identical to the analo-

independent integration momenta. The numerators contaife—> proof for the Kraichnan model, given in Ref]. In the
P 9 2 . ' . zero-mode approach to the Kraichnan model, the absence of
factorse[ P;;(k)q;q;]° stemming from transverse projectors

: . ..~ anomaly for the second-order correlation function can be re-
in the propaga_tors_. These factqrs suppress the singularity flted to the fact that for the isotropic sector there is no non-
k=g, occurring in the denominators for=0, and ensure trivial geometry in configurations of two particles: every-

‘t‘he"gmst(?,ndqe of the mig_rsils ovteraan?helgowever, the thing is defined by the distance between them and no zero
collinear” divergence atk=—q occurs i (u) correc- e can thus exist: see, e.g., &l

tion to the denominators is taken into account. Physically, For the simplest nontrivial case=4, one obtains
this divergence can be related to a strong resonant interaction '
between the excitations of the passive scalar field with the AR)=8(24+9C)/(d—1)(d+2)?, (4.9
opposite moment&= —q of equal moduli in two dimen-

sions. We shall see below that this singularity remarkablythat is, the quantity3 does not enter into the result. For
affects the behavior of the dimensiof@1) for the values of =6, all the coefficientg4.2) contribute to the result.

d much larger tham=2. In Fig. 1, we show the behavior of the quantity
Many studies have been devoted to the analysis of the
inertial-range turbulence in the limid— o [4,27-29. Our {n=[A3)—-AB)| _/n® (4.10

model has no finite “upper critical dimension,” above which
anomalous scaling would vanish. Like in the rapid-changdor n=4, 6, 8, and 2@from below to abovgas a function of
case[27] and, probably in the Navier-Stokes turbulenceu for several values af. We have subtracted the value of the
[28,29, the anomalous scaling disappearsdat>, but it  dimension for the rapid-change case, such that the curves
reveals itself already in th@©(1/d) approximation. Along approach zero as—c, and divided the difference by®,
with the resultd4] for the scalar rapid-change model, where such that the results for differents have the same order of
the O(1/d) expression for the anomalous exponents wergnagnitude[the quantity(4.1) is a third-order polynomial in
derived for anye, this confirms the importance of the large- n]. Itis worth noting that, since the leading coeffici¢8t11)
d expansion for the issue of anomalous scaling in fully deds independent ofu, it drops from the differenced
veloped turbulence. —Aolu=- Of the exactdimensions, and in the leading order
Straightforward analysis of the expressiods2) shows O(&?) the latter is proportional to the quantity, introduced
that, ford—o, one hasd=0(d°) [it is important here that above.
J(u,d)y=0(1/d)], B=0(d?%, andC=0(d), namely, As one can easily see from Fig. 1, the qualitative behavior
of £, depends essentially on the valuesnandd. For mod-
(U+2)(3u+2) eraten gndq (e.g.,n=4, 6, anq 8 forq=2 and 3, finite_
C=—"—"""—""d+0(d. (4.6)  correlation time enhances the intermitteri@nomalous di-
36(u+1)2 mensions become more negajive comparison with both
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¢, g, of n or d, the function{, approaches zero as—« from

1ol osl above. In other words, th®(1/u) correction to the rapid-
d=2 ’ d=5 change limit suppresses the intermittency, in contrast with

8 the case of moderate

sl 0.4 In the limit of larged, from Eq.(4.7) one easily obtains

4 0,3

_n(n—2)(2mL 1)

2 (2) _A(2) - 3
. 2 s 4 s 02| Ao = Arolu== 2t 1) +0(1/d%) (4.1
0 N RN
2 / Lo \\
/ T T [note that theO(n?) term in this approximation disappears
-4 O andA2) becomes only quadratic in]. One can see that for
u . . .
all values ofn, the difference(4.1)) is positive, decreases
(@) © monotonically whenu grows, and approaches zero from
¢ ¢ above wheru—oo.
n " It should be kept in mind, however, that any conclusion
201 014y d=10 about the larger behavior of the exponents, based on a
d=3 042F finite-order approximation of the expansion, can be trusted
only if £ is small enough, namelyn<1. Like for the rapid-
0,10 change casésee, e.g., the discussion in R§T)), higher-

order terms of thes expansion(3.10 contain additional
powers ofn and the actual expansion parameter appears to be
0,06/ ne rather thare itself. Thus the correct analysis of the large-

n behavior requires resummation of tleseries with the
0,04} additional condition thate =1, but we know of no model in

_05%’ 002, which such a resummation has been performed.

On the contrary, the analysis of the Feynman diagrams

10l 00— shows that the coefficients in E¢3.10 are expandable in
! u

1/d and thus the largd-behavior of the exponents is still in
(b) (d) the realm of application of the expansio;.% What is more,
; - _ for the rapid-change case, the terms of orgfeand higher in
FIG. 1. Behavior of the quantity, from Eq.(4.10 for n=4, 6, . ;
8, and 20(from below to abqovka;yg functiog E)U f(()))r d=2,3,5 thedimensiom,, behave .aQ(lldz) for larged and there-
and 10(from the left to the rightin the units of 10°. fore, has no contribution in th@(1/d) approximation; as a
result, the first order of the d/expansion forA, is con-
the limits: the rapid-changeu&«) and quenchedu=0)  tained completely in the first order of its expansion; see
ones. While theO(1/u) correction leads to a smooth de- Ref.[4]. Our result(4.11) suggests that this is equally true
crease of,, for increasing 14 from zero(in agreement with ~ for the case of a finite correlation time.
the numerical simulation of Ref14] for a shell model near In Ref. [13], the O(1/u) correction to the rapid-change
the rapid-change limi the rapid falloff ofZ,, is observed for ~case was derived by the zero-mode techniques in the limit of
increasingu from the quenched limii=0. As a result of the larged and arbitrary(not smal) values ofe, for the case of
competition between these two effects,is not a monoto-  a local turnover exponent¢ 7). Although the anomalous
nous function ofu and has a pronounced minimum in the exponents were shown to be nonuniversipendent om),
interval between 0 and 1. our results disagree with Rdfl3] in two respects. First, due

We recall that the slopes of the functiofisatu=0 are  to the universalityindependence aofi) of the leading term
infinite in two dimensions for all values afl due to the (3.11), the ratio(4.1)) is of orderO(e?) and notO(e). Sec-
presence of polesd(-2) in the O(u) terms in Eqs(4.58  ond, theO(1/u) correction in Eq(4.1]) is positive for alln,
and(4.50; see Sec. IV A. Fod>2, the slopes become finite while, according to Ref13], inclusion of the finite correla-
but they still remain very steep fat=3 and lead to a rapid tion time makes the anomalous exponents more negative in
falloff of £,,, as Fig. 1b) shows. This fact also suggests that comparison with the rapid-change limit for allande. It is
the quenched case, in contrast with the rapid-change one, caot clear whether this disagreement can be explained by
hardly serve as a good zero-order approximation in studyingome distinctions between our mod@.3), (2.4) and the
more realistic models of passive advection by the velocityelocity ensemble employed in RdfL3]. It is possible to
field with finite correlation time. show, however, that any modification of the functi¢h4)

If nordis large enough, the minimum becomes lessconsistent with the RG analysis performed in Hé&#8] and
pronounced, the behavior ¢f, becomes more regulde.g.,  Sec. lll above leads to a univergaidependent ofi) expres-
n=20 ford=2) and eventually,,, becomes a monotonically sion for the leading term in(}), so that thed(1/u) correc-
decreasing function afi (n=20 for d=3). For such values tion to the zero-correlated limit remains of ord@(e?).
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The changeover from the behavior typical to low spatial 1 2 3 4 5U
dimensions to the behavior described by E411) also pro- ' ‘ ‘ ‘

duces interesting patterns, as illustrated by Fig. 1dfer5 -15///‘
and 10.
-30

C. Anisotropic sectors

-45
Let us turn to the analysis of anisotropic contributions in
the structure function$3.6), (3.7), described by the dimen- -60 d=2
sions(3.10 with 1 #0. We recall that such contributions ap- 75l
pear in the inertial-range expressi@?) if the forcing Eq. ¥
(2.2) is chosen to be anisotropic, or a constant gradient of the n
scalar field is imposed. (a)
An important property of the first-order resu8.1l) is ; 5 3 4 u
that for any fixedn, the quantityAEﬁ) increases monotoni- 0 \ 2

cally with | [15]. One can say that the exponents, associated

with tensor composite operata3.9), exhibit a kind of hier- 20 F
archy related to the degree of anisotropy: the less is the rank 40

[, the less is the dimension and, consequently, the more im-

portant is the corresponding contribution to the inertial-range 60

expression(3.7). The leading terms in the even structure

functions (3.5) are given by the scalar operatdi&9) with 80 d=3
=0, that is, they are the same as in the model with isotropic 100}
forcing (we recall thain andl should be simultaneously even b
or odd. "
This behavior is in agreement with the existing phenom- ®)

enological ideas, according to which the anisotropy intro- g 2. Behavior of the quantitic,(d,u) from Eq.(4.13 as a

duced at large scales by the_forci(igoundary conditions,  fynction of u for n=2, 3, 4, 5, and from above to belowfor
geometry of an obstacle etadies out when the energy is g=2 (left) andd=3 (right).

transferred down to smaller scales owing to the cascade
mechanisn{30]. The hierarchy of anisotropic contributions  Consider the effects of the finite correlation time on the
appears rather universal, being also observed for a vectgjierarchy of the anisotropic contributions. To this aim, con-

(magneti¢ field, advected by the Kraichnan velocity en- sider the difference of the coefficient.1) for a fixed value
semble[31]; for the scalar advected by the two-dimensionalof n and two neighboring subsequent valued,of
Navier-Stokes velocity fielfi32] and for the turbulent veloc-

Nevertheless, the anisotropy survives in the inertial range AN, —ANY= 5 > ,
and reveals itself in dimensionless ratios involviy struc- (d=1)%(d+2)%(d+4)

ture functions,
Kn(d,u)={2(d+4)A+9(n—2)[2B—(d+1)C]}.
Ri= S 1/SET12, (4.12 (4.13

For a number of models it was shown that the skewneséwe recall that for a fixea, all possible values dfare either
factor R, decreases down the scales but slower than presven or odd, so that the subsequent valudsiifer by 2). It
dicted by phenomenological theorigs 6], while the higher- is clear from Eq(4.13 that the sign and the dependence on
order odd ratioghyperskewnes®, etc) increase, thus sig- U of the whole expression is determined by the behavior of
naling persistent small-scale anisotroj#8,19,31,32 Due the functionC,(d,u).

to the aforementioned hierarchy of the dimensith41), the In Fig. 2, we plot the quantityC,(d,u) as a function ofi
leading terms in the odd structure functiof®5) in our for n=2, 4, 6, and 2Qfrom above to belowfor d=2 [Fig.
model are determined by the vector operatt3$9) with | 2(a)] andd=3 [Fig. 2b)]. The function is always negative
=1, and it is easy to check the above statements from théor all the cases studied and increases monotonically with

explicit expression(3.11). This behavior persists in the limit of largk as follows from
Of course, thed(&?) contribution(4.1) cannot change all the asymptotical expressida.7).
the above properties of the dimensiahg,, determined by We thus conclude that ti@(?) contribution in the exact

their leadingO(e) contribution(3.11), as far as small values dimension(3.10 “tries to cope” with the hierarchy, set by
of £ are concerned. However, since the dependence on theO(e) term, for all values of, |, d, andu; this effect is at
occurs only in theD(?) contribution, it should be taken into its strongest fou=0 and weakens monotonically asin-
account if one wishes to discuss how finite correlation timecreases from 0 tee.

affects the hierarchy of the dimensions or the behavior of the Now let us turn to the dimensionless rati® in EQ.
dimensionless ratios. (4.12. From the discussion below E@.12) and asymptotic
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1 2 3 4 5U changes its sign for some finite valuew#énd the growth of

R, slows down. Fok=3, the corrections are negative for
all u and the growth of the corresponding higher-order ratios
Ry appears slower than predicted by tBés) expression.
One thus may conclude that fd=3, with the exception of
thek=2 case, the effect of the second-order term is opposite
to the tendency set by the first-order approximation.

For k large enough and ang, the behavior of the quan-
tities A$2), 1,1 becomes similar to that of the even dimensions
A(zi?o discussed in Sec. IV B: they decrease monotonically as
u increases, comparatively fast for smalldue to the singu-
larity in the slope ford=2; see Sec. IV Aand rather slow
when u becomes large enough. This follows from the fact

& that thel-independent contribution in the general expression
2 A® pehaves a®(n%) for n—o, while its I-dependent con-

1 L/ tribution behaves only a®(n); see Eq.(4.1).

—— . We also note that for moderate the quantitiesA(zi)H]1

-1 show a nonmonotonous dependenceuwoim the region of

2 small u and in this respect they also resemble the even di-
3 mensions; see Fig. 1 and the discussion in Sec. IV B.

4 V. CONCLUSION

-5

We have applied the RG and OPE methods to a simple
model of a passive scalar quantity advected by the synthetic
FIG. 3. Behavior of the quantitg, =A%), , /(2k+1)? from  Gaussian velocity field with a given self-similar covariance

Eq. (4.1) as a function ofu for k=1, 2, 3, and 4from below to  With finite correlation time. The structure functions of the
above for d=2 (left) andd=3 (right), in the units of 103. scalar field exhibit inertial-range anomalous scaling behav-
ior, as a consequence of the existence in the model of com-

03,6 btains th like i ial posite operators with negative scaling dimensions, identified
representatiori3.6) one obtains the powerlike inertial-range with anomalous exponents.

asymptotic expressioﬂzkoc_(mr)AzkHJ with Ag.1,, from For the special case of a local turnover exponent, the
Eq. (3.10 (we recall that in our modeh,¢=0; see Sec. anomalous exponents are nonuniversal through the depen-
IV B). Due to theu |n'dep'end'ence of the first-order answer gence on a dimensionless parametdhat has the meaning
(3.11), the O(e) contribution in the exponeniy.;,=&(d  of the ratio of the velocity correlation time and the scalar
+2-4k?)/2(d+2)+0(&°) coincides with its analog for the - trnover time. The universality reveals itself only in the sec-
Kraichnan model; see Ref5] for k=1 and Ref.[19] for  ong order of thes expansion, and we have derived the ex-
generalk. It _c_ompletely determines the qualitative behaworpoma.ms to orde®(=2), including anisotropic contributions.
of the quantities?, : for k=1 one has\; ;>0 and the skew- |t js shown that, for isotropic contributions, the qualitative
ness factork, decreases withnr, while for k=1 one has effect of finite correlation time depends essentially on the
A2+11<0 and the higher-order ratioBy increase fomr  order of the structure functiomand the space dimensionality
—0. ) d. For moderaten andd, finite correlation time enhances the

In Fig. 3, we show the behavior of the second-order corintermittency in comparison with both the limits: the rapid-
rection A%, ; ;, obtained from the general formufEq.  change (=) and quenchedu=0) ones. TheD(&2) term
(4.1] and divided by (&+1)3 for the even dimensions, as a shows a highly nontrivial behavior in the vicinity of the
function ofu for k=1, 2, 3, and 4from below to abovgefor  quenched limit: a rapid falloff whem=0 increases from
d=2 [Fig. 3@] andd=3 [Fig. 3(b)]. zero, with infinite derivative at=0 for d=2, with a pro-

One can see that the effect of tB¢s) correction on the  nounced minimum fou~ 1. This irregularity shows that the
inertial-range behavior of the ratid8, is different for dif-  time-independent advecting field can hardly be a reasonable
ferentd, k, and u. In two dimensions, the corrections are approximation in studying more realistic models of passive
negative for allu and moderaté: the decay of the skewness advection by the velocity field with finite correlation time.
factorR, for mr—0 appears even slower than indicated byThe behavior near the opposite limit=c, is smooth in
the O(e) approximation, while the growth of the ratios with agreement with the existing simulation for a shell model
k=2 becomes faster. [14].

In three dimensions, the correction is negativelkferl so The behavior changes remarkably wherand/ord be-
that the decayR, for mr—0 is also slower than in th@(e) come large enough: the correction to the limit o~ due to
approximation. Fok=2, the correction is negative for small finite correlation time is positive for all (that is, the anoma-

u (so that the growth of the hyperskewness facky for  lous scaling is suppressed in comparison with the rapid-
mr—O0 is faster than in the first-order approximatiphut it  change cageit is maximal foru=0 and monotonically de-

—
(=2
~
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creases to zero astends to infinity. effects, occur in the diagrams; see the discussion in Ref.

In the anisotropic sectors, th@(e?) terms diminish the [18]. (It should be noted, however, that such singularities do
hierarchy revealed by the first-order terms for all values ofnot necessarily lead to a changeover in the inertial-range be-
the parameters, |, andd; this effect is maximal ai=0 and  havior, as shown in Ref[18] for the special case of the
decreases monotonically withul/ structure functionS, for u=0.) On the other hand;=1/2

The effect of theO(e?) corrections on the inertial-range can be regarded as the upper bound of the range of validity
behavior of the dimensionless ratios involving odd-orderof the model itself: the lack of Galilean covariance becomes
structure functions depends o For d=2 and moderat&  a serious drawback of the synthetic Gaussian velocity en-
these corrections are negative; the decay of the skewnesemble when the sweeping effects become important. The
factor R, for mr—0 is slower while the growth of the next important step should be the analytical derivation of
higher-order ratiosR, with k=2 is faster than indicated by anomalous exponents of a passive scalar advected by the
theO(&) approximation by Refd5,18]. Ford=3, the effect ~Galilean covariant velocity field; this work is now in
is, for most cases, opposite to the tendency set by the firsprogress.
order approximation: both the decay of the skewness factor
and the growth of the higher-order ratios become slower.

Our analysis has been confined within the region of small
e, where the results obtained within tle expansion are The authors thank M. Hnatich, A. Kupiainen, P. Muratore
internally consistent and undoubtedly reliadlee recall  Ginanneschi, M. Yu. Nalimov, A. N. Vasil’ev, and A. Vul-
again that, although the leading terms of the anomalous exgiani for discussions. The work was supported by the Nordic
ponents are of ordeD(e), the leading terms in which the Grant for Network Cooperation with the Baltic Countries
effects of finite correlation time occur are of ord®@te?)]. and Northwest Russi@Grant No. FIN-18/2001L N.V.A. and
We do not discuss here the serious issue of validity ofethe L.Ts.A. were also supported by the program “Universities of
expansions for finitee=0(1). One canthink that, in our Russia” and the GRACENAS Grant No. E00-3-24. N.V.A.
model, the natural region of validity of the expansion is was supported by the Academy of FinlariGrant No.
restricted by the value =1/2, where the velocity field ac- 79781). N.V.A. and L.Ts.A. acknowledge the Department of
quires negative critical dimensidalong with all its powers  Physical Sciences of the University of Helsinki for their kind
and new IR singularities, related to the well-known sweepinghospitality.
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