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Anomalous scaling of a passive scalar advected by the turbulent velocity field
with finite correlation time: Two-loop approximation
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The renormalization group and operator product expansion are applied to the model of a passive scalar
quantity advected by the Gaussian self-similar velocity field with finite, and not small, correlation time. The
inertial-range energy spectrum of the velocity is chosen in the formE(k)}k122«, and the correlation time at
the wave numberk scales ask221h. Inertial-range anomalous scaling for the structure functions and other
correlation functions emerges as a consequence of the existence in the model of composite operators with
negative scaling dimensions, identified with anomalous exponents. Forh.«, these exponents are the same as
in the rapid-change limit of the model; forh,«, they are the same as in the limit of a time-independent
~quenched! velocity field. For «5h ~local turnover exponent!, the anomalous exponents are nonuniversal
through the dependence on a dimensionless parameter, the ratio of the velocity correlation time, and the scalar
turnover time. The nonuniversality reveals itself, however, only in the second order of the« expansion and the
exponents are derived to order«2, including anisotropic contributions. It is shown that, for moderate order of
the structure functionn, and the space dimensionalityd, finite correlation time enhances the intermittency in
comparison with both the limits: the rapid-change and quenched ones. The situation changes whenn and/ord
become large enough: the correction to the rapid-change limit due to the finite correlation time is positive~that
is, the anomalous scaling is suppressed!, it is maximal for the quenched limit and monotonically decreases as
the correlation time tends to zero.
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ev
lin
a
ad
el
g
a
op
e

te
th
d

i
u

hi
e.
st

ge
fs
na
-
n-
f
th

ed
on

as-
he

or-
ts.
tails

for
tud-
r in
el

pear
ime.

-
nd
rges

osite
ith
sys-
nts,
f
ond
or
the
de-
I. INTRODUCTION

In recent years, considerable progress has been achi
in the understanding of intermittency and anomalous sca
of fluid turbulence. The crucial role in these studies w
played by a simple model of a passive scalar quantity
vected by a random Gaussian field, white in time and s
similar in space, the so-called Kraichnan’s rapid-chan
model @1#. There, for the first time the existence of anom
lous scaling was established on the basis of a microsc
model@2#, and the corresponding anomalous exponents w
calculated within controlled approximations@3–6# and a sys-
tematic perturbation expansion in a formal small parame
@7#. Detailed review of the recent theoretical research on
passive scalar problem and the bibliography can be foun
Ref. @8#.

Within the approach developed in Refs.@3–6#, nontrivial
anomalous exponents are related to ‘‘zero modes,’’ that
homogeneous solutions of the closed exact differential eq
tions satisfied by the equal-time correlation functions. In t
sense, the rapid-change model appears ‘‘exactly solvabl

In a wider context, zero modes can be interpreted as
tistical conservation laws of the particle dynamics@9#. The
concept of statistical conservation laws appears rather
eral, being also confirmed in numerical simulations by Re
@10,11#, where the passive advection by the two-dimensio
Navier-Stokes velocity field@10# and a shell model of a pas
sive scalar@11# were studied. This observation is rather i
triguing because in those models no closed equations
equal-time quantities can be derived due to the fact that
advecting velocity has a finite correlation time~for a passive
1063-651X/2002/66~3!/036313~11!/$20.00 66 0363
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field advected by a velocity with given statistics, clos
equations can be derived only for different-time correlati
functions and they involve infinite diagrammatic series!.

One may thus conclude that breaking the artificial
sumption of the time decorrelation of the velocity field is t
crucial point@10,11#.

An important issue related to the effects of the finite c
relation time is the universality of the anomalous exponen
It was argued that the exponents may depend on more de
of the velocity statistics than only the exponentsh and «
@12#. This idea was supported in Refs.@13,14#, where the
case of short but finite correlation time was considered
the special case of a local turnover exponent. In those s
ies, the anomalous exponents were derived to first orde
small correlation time, with Kraichnan’s rapid-change mod
@13# or analogous shell model for a scalar field@14# taken as
zeroth-order approximations. The exponents obtained ap
nonuniversal through the dependence on the correlation t

In Ref. @7# and subsequent papers@15–19#, the field theo-
retic renormalization group~RG! and operator product ex
pansion~OPE! were applied to the rapid-change model a
its descendants. In that approach, anomalous scaling eme
as a consequence of the existence in the model of comp
operators with negative scaling dimensions, identified w
the anomalous exponents. This allows one to construct a
tematic perturbation expansion for the anomalous expone
analogous to the famous« expansion in the RG theory o
critical behavior, and to calculate the exponents to the sec
@7,15# and third @16# orders. For passively advected vect
fields, where the calculations become rather involved,
exponents for higher-order correlation functions were
©2002 The American Physical Society13-1
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rived by means of the RG techniques to the leading orde
« in Refs.@17#.

Besides the calculational efficiency, an important adv
tage of the RG approach is its relative universality: it is n
related to the aforementioned solvability of the rapid-chan
model and can also be applied to the case of finite correla
time or non-Gaussian advecting field. In Ref.@18# ~see also
Ref. @19# for the case of compressible flow! the RG and OPE
were applied to the problem of a passive scalar advecte
a Gaussian self-similar velocity with finite~and not small!
correlation time. The energy spectrum of the velocity in t
inertial range has the formE(k)}k122«, while the correla-
tion time at the wave numberk scales ask221h. It was
shown that, depending on the values of the exponents« and
h, the model reveals various types of inertial-range sca
regimes with nontrivial anomalous exponents. Forh.«,
they coincide with the exponents of the rapid-change mo
and depend on the only parameter 2«2h, while for «.h
they coincide with the exponents of the oppos
~‘‘quenched’’ or ‘‘frozen’’! case and depend only on«.

The most interesting case ish5«, when the exponents
can be nonuniversal through the dependence on the cor
tion time ~more precisely, on the ratiou of the velocity cor-
relation time and the turnover time of the passive scalar!. In
the field theoretic language, the nonuniversality of the ex
nents in this regime is a consequence of the degenerac
the corresponding fixed point of the RG equations. It agr
with the findings of Refs.@13,14# since the borderlineh
5«, including the ‘‘Kolmogorov’’ point h5«54/3, corre-
sponds to the case of a local turnover exponent. It is a
interesting to note that the same relationh5« for the bound-
ary between the time-decorrelated and quenched cases
countered in a model of passive advection by a strongly
isotropic flow, studied in Refs.@20#. It was argued in Ref.
@21# that the same boundary will be observed with very g
eral assumptions on the velocity statistics. Although the p
sibility of the nonuniversality of anomalous exponents
h5« was demonstrated by the rigorous RG analysis,
practical calculation by Ref.@18# has shown that they appea
universal~independent ofu) to the first order in« andh: in
the one-loop approximation, the anomalous dimensions
the relevant composite operators depend on a combinatio
the model parameters~couplings! that remains constan
along the line of the fixed points. This fact is rather disa
pointing because it means that in the one-loop approxima
it is impossible to judge how the finite correlation time a
fects intermittency, in particular, whether the anomalo
scaling is enhanced or suppressed in comparison with
rapid-change or quenched limits.

In this paper, we present the anomalous exponents to
derO(«2) ~two-loop approximation! for the most interesting
caseh5«, including the exponents of the anisotropic co
tributions, and study their dependence onu. @It is not neces-
sary to separately consider the casesh.« (h,«), because
the corresponding exponents are the same as for the ra
change~quenched! velocity field and can be obtained from
the caseh5« in the limits u→` (u→0)].

In Sec. II, we describe our model and its interesting s
cial cases. In Sec. III, we briefly recall the field theore
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formulation, the RG and OPE approach to the model, and
O(«) result for the anomalous exponents@18#. The results of
the two-loop calculation are presented and discussed in
IV: in Sec. IV A, we give the anomalous exponents to ord
O(«2) and then discuss them separately for the isotro
~Sec. IV B! and anisotropic~Sec. IV C! contributions.

The main conclusion of the paper can be formulated
follows: the qualitative effect of the finite correlation time o
the anomalous scaling depends essentially on the correla
function considered, the value ofu, and the space dimension
ality d. For the low-order structure functions and in low d
mensions (d52 or 3!, the inclusion of finite correlation time
enhances the intermittency in comparison with both the l
its: the time-decorrelated (u5`) and time-independent (u
50) ones. Although the anomalous exponents have w
defined limits foru→0, they show interesting irregularitie
in the vicinity of the quenched limit: a rapid falloff whenu
50 increases from zero, with infinite slope ford52, with a
pronounced minimum foru;1. On the contrary, the behav
ior in the region of largeu is smooth, like for the shell mode
studied in Ref.@14#. For higher-order structure functions an
larged, the anomalous scaling is always weaker in compa
son with the rapid-change limit and the corresponding~posi-
tive! correction is maximal foru50 and monotonically de-
creases to zero asu tends to infinity.

II. THE MODEL

The advection of a passive scalar fieldu(x)[u(t,x) is
described by the stochastic equation

“ tu5n0]2u1 f , “ t[] t1v i] i , ~2.1!

where ] t[]/]t, ] i[]/]xi , n0 is the molecular diffusivity
coefficient,]2 is the Laplace operator,v(x)[$v i(x)% is the
divergence-free~owing to the incompressibility! velocity
field, andf [ f (x) is an artificial Gaussian random noise wi
zero mean and correlation function

^ f ~x! f ~x8!&5C~ t2t8, r !, r5x2x8. ~2.2!

The form of the correlator is unessential; it is only importa
that the functionC in Eq. ~2.2! decreases rapidly forr @L,
where L is some integral scale. The noise maintains
steady state of the system and, ifC depends on the vectorr
and not only its modulusr[r , is a source of large-scal
anisotropy. In a more realistic formulation, the noise is
placed by an imposed constant gradient of the scalar fi
see, e.g., Refs.@5,6,18,19,22#.

In the real problem, the velocity field satisfies the Navi
Stokes equation. Following Refs.@14,18,19,22#, we assume
for v(x) in Eq. ~2.1! a Gaussian distribution with zero mea
and correlator

^v i~x!v j~x8!&5E dk

~2p!d
Pi j ~k!Dv~ t2t8,k!

3exp@ ik•~x2x8!#, ~2.3!
3-2
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where Pi j (k)[d i j 2kikj /k2 is the transverse projector an
the functionDv(t,k) will be chosen in the form

Dv~ t2t8,k!5
D0

2u0

1

kd2212«
exp@2vk~ t2t8!#,

vk5u0n0 k22h. ~2.4!

HereD0 andu0 are positive amplitude factors and the po
tive exponents« and h play the part of small expansio
parameters in the RG theory; see Refs.@18,19#. It is also
convenient to introduce the ‘‘coupling constant’’g0

[D0 /n0
2 ~expansion parameter in the ordinary perturbat

theory!. The infrared~IR! regularization is provided by the
sharp cutoff in all momentum integrals from below atk
5m with m;1/L.

As was pointed out in Ref.@22#, the Gaussian model~2.3!,
~2.4! suffers from the lack of Galilean invariance and the
fore does not take into account the self-advection of tur
lent eddies. It is well known that the different-time correl
tions of the Eulerian velocity field are not self-similar, as
result of these ‘‘sweeping effects,’’ and depend substanti
on the integral scale; see, e.g., Ref.@23#. It would be much
more appropriate to use Eqs.~2.3! and~2.4! in the Lagrang-
ian frame, but this is embarrassing due to the daunting
of relating Eulerian and Lagrangian statistics for a flow w
a finite correlation time~which is not a problem for the zer
correlation time limit!. However, the results of Ref.@22#
show that the Gaussian model gives reasonable descrip
of the passive advection in an appropriate frame, where
mean velocity field vanishes. To justify the model~2.3!,
~2.4!, we also note that we shall be interested preferably
the equal-time, Galilean invariant quantities~structure func-
tions!, which are not affected by the sweeping, and we
pect that their absence in the Gaussian model is not cru

The model~2.3!, ~2.4! contains two special cases that po
sess some interest on their own: in the limitu0→`, g08
[g0 /u0

25const we arrive at the rapid-change model,

Dv~v,k!→g08n0 d~ t2t8!k2d22«1h, ~2.5!

while the limit u0→0, g09[g0/2u05const corresponds to th
case of a quenched~time-independent! velocity field,

Dv~v,k!→g09n0
2 k2d1222«. ~2.6!

The latter case has a close formal resemblance with the w
known models of random walks in random environment w
long-range correlations; see Refs.@24,25#.

III. RENORMALIZATION GROUP AND OPERATOR
PRODUCT EXPANSION

The RG theory of the model~2.1!–~2.4! is presented in
Refs.@18,19# in detail; below we briefly recall only the nec
essary information. The stochastic problem~2.1!–~2.4! can
be cast as a field theory with action functional

S~u,u8,v !52vDv
21v/21u8D fu8/21u8@2“ t1n0]2#u,

~3.1!
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where u8 is an auxiliary scalar field andD f and Dv are
correlators~2.2! and ~2.3!, respectively. In Eq.~3.1!, all the
required integrations overx5(t,x) and summations over th
vector indices are understood.

The model~3.1! is logarithmic for«5h50; the ultravio-
let ~UV! singularities have the form of poles in various line
combinations of« and h in the correlation functions. They
can be removed by the only counterterm of the formu8]2u,
which is equivalent to the following multiplicative renorma
ization of the parametersg0 , u0, andn0 in the action func-
tional ~3.1!:

n05nZn , g05gm2«1h Zg , u05umh Zu , ~3.2!

whereg, u, andn are the renormalized counterparts of t
bare parameters;m is the reference mass in the minimal su
traction~MS! scheme, which we always use in practical c
culations; andZi5Zi(g,u;d;«,h) are the renormalization
constants satisfying the identities

Zg5Zn
23 , Zu5Zn

21 . ~3.3!

Fixed points of the corresponding RG equations are fou
from the requirement that theb functions,

bg[D̃mg5g@22«2h13gn#,

bu[D̃mu5u@2h1gn#, gn[D̃mln Zn ~3.4!

vanish. HereD̃m is the operationm]m for fixed bare param-
eters and the relations betweenb functions and the anoma
lous dimensiongn result from the definitions and the relatio
~3.3!.

The exact relationbg /g23bu /u52(h2«), following
from Eq. ~3.4!, shows that theb functions cannot vanish
simultaneously for finite values of their arguments, exc
for the caseh5«. Therefore, to find the fixed points w
must set eitheru5` or u50 and simultaneously rescaleg
so that the anomalous dimensiongn remain finite. These two
options correspond to the two limits~2.5! and ~2.6!, so that
the rapid-change and quenched cases are fixed points o
general model. The analysis shows that the former is
stable~and thus describes the inertial-range asymptotic
havior! for h.«, while the latter is IR stable forh,«.

The most interesting case ish5«, when theb functions
become proportional and the setbg5bu50 reduces to a
single equation. As a result, the corresponding fixed poin
degenerate: rather than a point, one obtains a line of fi
points in theg-u plane. They can be labeled by the value
the parameteru, which has the meaning of the ratio of th
velocity correlation time and the scalar turnover time.

Existence of the IR stable fixed points implies certa
scaling properties of various correlation functions at sca
larger than the dissipative length;g0

21/3« . In particular, for
the equal-time structure functions

Sn~r !5^@u~ t,x!2u~ t,x8!#n&, r5x2x8, ~3.5!

one obtains
3-3
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Sn~r !5D0
2n/2r n(12«/2)Fn~mr ! ~3.6!

~odd structure functions are nontrivial if the correlation fun
tion ^v f & is nonzero or if a constant gradient of the sca
field is imposed!. In the presence of anisotropy the scali
functionsFn(mr ) can be decomposed into irreducible rep
sentations of the SO(d) group. In the simplest case o
uniaxial anisotropy~which is sufficient to revealall anoma-
lous exponents! one can write

Fn~mr !5Pl~z!Fnl~mr!, z5~n•r !/r , ~3.7!

wherePl(z) is the l th order Gegenbauer polynomial~Leg-
endre polynomial ford53) andn is a unit vector that deter
mines the distinguished direction.

The leading behavior of the functionsFnl for mr!1 ~in-
ertial range! is found from the corresponding operator pro
uct expansion and has the form

Fnl}~mr!Dnl, ~3.8!

where the ‘‘anomalous exponent’’Dnl is nothing other than
the critical dimension of the irreducible tracelessl th rank
tensor composite operator built ofn fields u and minimal
possible number of derivatives@18#. For l<n such an opera-
tor has the form

] i 1
u•••] i l

u ~] iu] iu!p1•••, n5 l 12p. ~3.9!

Here the dots stand for the appropriate subtractions involv
the Kroneckerd symbols, which ensure that the resultin
expressions are traceless with respect to any given pa
indices, for example,] iu] ju2d i j ]ku]ku/d. We also note
that the numbersn and l necessarily have the same pari
that is, they can only be simultaneously even or odd.

For the most interesting case of the degenerate fi
point, the dimensionsDnl are calculated in the form of serie
in the only independent exponent«5h, that is,

Dnl5 (
k51

`

«k Dnl
(k) . ~3.10!

In the lowest order one obtains@18#

Dnl
(1)5

2n~n22!~d21!1l l~d11!

2~d21!~d12!
~3.11!

with l l[ l (d1 l 22). Fork>2, the coefficientsDnl
(k) depend

not only ond but also on the parameteru, the ratio of the
velocity correlation time, and the scalar turnover time, wh
labels fixed points in theg-u plane~see above!.

The reader not interested in the details of practical ca
lation can skip the end of this section and pass to the re
for Dnl

(2) . Calculation of the higher-order coefficients in the«
expansions for the rapid-change model is presented in R
@15,16# in detail. Analogous calculations for the finite corr
lated case are more difficult in two respects. First, there
more relevant Feynman diagrams in the same order of
03631
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turbation theory~for zero correlation time, many diagram
contain closed circuits of retarded propagators and vani!.
Second, and the more important distinction, is that the d
grams for the finite correlated case involvetwo different dis-
persion laws:v}k2 for the scalar andv}k22h for the ve-
locity fields. As a result, the calculation, as well a
expressions for the renormalization constants, become ra
cumbersome already in the lowest~one-loop! approximation;
see Refs.@18,19#.

The latter difficulty can be circumvented as follows. Car
ful analysis shows that in the MS scheme all the nee
anomalous dimensions,gn from Eq. ~3.4! and gnl

[D̃mln Znl , in contrast to the respective renormalization co
stantsZn andZnl , are independent of the exponents« andh
in the two-loop approximation~for the one-loop approxima
tion this is obvious from the explicit expressions; see Re
@18,19#!. It is thus sufficient to calculate them for any sp
cific choice of the exponents« and h that guarantees UV
finiteness of the diagrams. The most convenient choice ih
50 and arbitrary«: all the diagrams remain finite, the ex
ponents in the aforementioned dispersion laws become id
tical, and the practical calculations drastically simplify a
become feasible.

To avoid possible misunderstandings, it should be emp
sized that such an independence isnot guaranteed by the
renormalizability of the model. The renormalizability in th
analytic regularization only guarantees that the renormal
tion scheme can be chosen such that the correlation fu
tions, along with the coefficientsb and g in the RG equa-
tions, will be analytic at the origin in the space of tw
complex variables« andh @26#. We used another scheme
which the functionsb andg are independentof « andh in
the first two orders, which does not excludenonanalyticde-
pendence on these parameters in higher orders. We ex
that in the three-loop approximation nonanalytic constr
tions such as («1h)/(«12h) will indeed appear in the
anomalous dimensions, in particular, due to the necessit
take into account UV finite parts of the two-loop diagram
~with our choice of the sharp IR cutoff in Eq.~2.4!, the
one-loop diagrams have no UV finite parts; cf.@16# for the
rapid-change case!.

Thus, we conclude that the knowledge of the renormali
tion constants forh50 is sufficient to obtain the anomalou
dimensions,b functions, coordinates of the fixed points, an
the critical dimensions of composite operators for arbitra
values ofh and «, including the most interesting caseh
5«, which we always discuss from now on.

IV. ANOMALOUS EXPONENTS IN THE TWO-LOOP
APPROXIMATION

A. General expressions

We have performed the complete two-loop calculation
the RG functions~3.4! and the critical dimensions~3.10! of
the composite operators~3.9! for arbitrary values ofn, l, d,
3-4
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andu and obtained the following expression for the seco
coefficient in expansion~3.10!:

Dnl
(2)5

1

~d21!2~d12!2~d14!

3~2~d14!A@n~n22!~d21!1l l #

1~n22!$6B@n~n24!~d21!13l l #

19C@n~d1n!~d21!2l l~d11!#%! ~4.1!

with l l[ l (d1 l 22). Here and below we denote

A5
~u2121/u!~d11!

2~d12!~12u!

1
~d11!

2~d14!~12u!u~11u!2
F3S 1

~u11!2D
1

2ud~d12!

~12d!~12u!
J~u,d!, ~4.2a!

B5
~d11!

3~12u!2~d14!
F u

u11
F3S 1

2~u11! D
2

1

~u11!2
F3S 1

~u11!2D 2
u2

4
F3S 1

4D G , ~4.2b!

C5
1

9~12u!2 H 3u2~d21!

4
F2S 1

4D
2

u@2d211u~d22!#

~u11!
F2S 1

2~u11! D
1

@d1112u~d22!#

~u11!2
F2S 1

~u11!2D 2
u2~d11!

~d14!
F3S 1

4D
1

4u~d11!

~u11!~d14!
F3S 1

2~u11! D
2

4~d11!

~u11!2~d14!
F3S 1

~u11!2D J . ~4.2c!

We also have denotedFk(x)[F(1,1;d/21k;x) for the hy-
pergeometric series

F~a,b;c;z![11
ab

c
z1

a~a11!b~b11!

c~c11! S z2

2! D1•••.

The values ofFk entering into Eq.~4.2! can be related by the
recurrent relation

~x21!F2~x!5x~d12!F3~x!/~d14!21,

but the resulting expressions look more cumbersome and
shall keep bothF2 andF3 in the formulas.
03631
d

e

The quantityJ(u,d) in Eq. ~4.2a! can only be expresse
in the form of a single convergent integral, suitable for n
merical calculation,

J~u,d!5
G~d/2!

Ap G@~d21!/2#
E

0

1

dz
~12z2!d/2

~u21!214uz2

3H z2~12z2!lnS 11u

2 D2z~u2112z2!arcsinz

2
z~12z2!1/2~12u2z2!

@2~11u!2z2#1/2

3arctanFz@2~11u!2z2#1/2

~11u2z2!
G J , ~4.3!

whereG(•••) is the Eulerg function.
The quantities~4.2!, and hence the dimensions~4.1!, have

finite limits for u→` andu→0. In the first limit,Dnl
(2) co-

incides with the known result for the Kraichnan’s rapi
change model~see Ref.@7# for l 50 and 2 and Ref.@15# for
generall ). The O(1/u) correction to the rapid-change lim
can be found from the following asymptotic expressions
the coefficients~4.2!:

A5
~d11!

2~d12!
~112/u!1O~1/u2!, ~4.4a!

B5
~d11!

12~d14!
F3S 1

4D ~112/u!1O~1/u2!, ~4.4b!

C5F2
~d21!

12
F2S 1

4D1
~d11!

9~d14!
F3S 1

4D G
1

1

u F2
~d21!

6
F2S 1

4D1
2~d11!

9~d14!

3F3S 1

4D1
~d22!

9 G1O~1/u2!. ~4.4c!

The opposite case,u50, corresponds to the quenched~time-
independent! velocity field. This case was extensively stu
ied in connection with the so-called ‘‘random-rando
walks’’ ~random walks in random environments!; see the re-
view paper@24# and references therein. Our results for t
functionbg from Eq.~3.4! and the corresponding fixed poin
are in agreement with the two-loop results quoted in R
@24# for the model of random-random walks. To our know
edge, the dimensions of composite operators~3.9! have not
been studied in that context, and below we give t
asymptotic expressions for the coefficients~4.2! sufficient to
find the dimensions~4.1! up to order O(u) near the
quenched limit:
3-5
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A52
~d11!~3d14!

2d~d12!
1u~d11!H ~3d12!

2d~d22!
2

2

d~d12!

1
ln 2

~d14!
1

~d13!

~d14!~d16!
F4S 1

2D2
2~d13!

~d14!2J , ~4.5a!

B52
~d11!

3~d12!
1

u~d11!

3 H 1

~d14!
F3S 1

2D1
4

d~d12!J ,

~4.5b!

C5
~d11!~d214!

9d~d12!
1

u

9 H ~122d!F2S 1

2D1
4~d11!

~d14!
F3S 1

2D
2

4~d11!~d12!

d~d22!
1

2~d212d14!

~d12! J , ~4.5c!

up to corrections of orderO(u2).
It is worth noting that theO(u) terms in Eqs.~4.5a! and

~4.5c! contain poles in (d22) and thus diverge ford52.
Analysis shows that, ford52, the leading correction to th
result foru50 is not analytical inu and has the formu ln u.
Formally, the singularity atd52 is explained as follows
Some of the two-loop diagrams contain ‘‘energy denomi
tors’’ of the form (k1q)21O(u), wherek and q are two
independent integration momenta. The numerators con
factors}@Pi j (k)qiqj #

2 stemming from transverse projecto
in the propagators. These factors suppress the singulari
k52q, occurring in the denominators foru50, and ensure
the existence of the integrals overk and q. However, the
‘‘collinear’’ divergence atk52q occurs if theO(u) correc-
tion to the denominators is taken into account. Physica
this divergence can be related to a strong resonant intera
between the excitations of the passive scalar field with
opposite momentak52q of equal moduli in two dimen-
sions. We shall see below that this singularity remarka
affects the behavior of the dimensions~4.1! for the values of
d much larger thand52.

Many studies have been devoted to the analysis of
inertial-range turbulence in the limitd→` @4,27–29#. Our
model has no finite ‘‘upper critical dimension,’’ above whic
anomalous scaling would vanish. Like in the rapid-chan
case @27# and, probably in the Navier-Stokes turbulen
@28,29#, the anomalous scaling disappears atd5`, but it
reveals itself already in theO(1/d) approximation. Along
with the results@4# for the scalar rapid-change model, whe
the O(1/d) expression for the anomalous exponents w
derived for any«, this confirms the importance of the larg
d expansion for the issue of anomalous scaling in fully d
veloped turbulence.

Straightforward analysis of the expressions~4.2! shows
that, ford→`, one hasA5O(d0) @it is important here that
J(u,d)5O(1/d)], B5O(d0), andC5O(d), namely,

C5
~u12!~3u12!

36~u11!2
d1O~d0!. ~4.6!
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It then follows that for larged, the dimension~4.1! behaves
asO(1/d2) and is completely determined by the only cont
bution with the coefficientC. This gives

Dnl
(2)5

~n22!~n2 l !~u12!~3u12!

4~u11!2d2
1O~1/d3!. ~4.7!

The general expressions~4.1!, ~4.2! are rather cumbersome
and in the subsequent sections we shall separately dis
isotropic contribution~even n, l 50) and anisotropic ones
~generaln, lÞ0).

B. Isotropic sectors

Expression~4.1! simplifies for the most important case o
the isotropic sector~evenn and l 50),

Dn0
(2)5

n~n22!

~d21!~d12!2~d14!

3$2~d14!A16~n24!B19~d1n!C%. ~4.8!

Equation~4.8! givesD20
(2)50 in agreement with the exac

result D2050 @18#. This means that the second-order stru
ture function is not anomalous. The formal proof is based
certain Schwinger equation, which has the meaning of
energy conservation law; it is almost identical to the ana
gous proof for the Kraichnan model, given in Ref.@7#. In the
zero-mode approach to the Kraichnan model, the absenc
anomaly for the second-order correlation function can be
lated to the fact that for the isotropic sector there is no n
trivial geometry in configurations of two particles: ever
thing is defined by the distance between them and no z
mode can thus exist; see, e.g., Ref.@8#.

For the simplest nontrivial casen54, one obtains

D40
(2)58~2A19C!/~d21!~d12!2, ~4.9!

that is, the quantityB does not enter into the result. Forn
>6, all the coefficients~4.2! contribute to the result.

In Fig. 1, we show the behavior of the quantity

zn[@Dn0
(2)2Dn0

(2)uu5`#/n3 ~4.10!

for n54, 6, 8, and 20~from below to above! as a function of
u for several values ofd. We have subtracted the value of th
dimension for the rapid-change case, such that the cu
approach zero asu→`, and divided the difference byn3,
such that the results for differentn’s have the same order o
magnitude@the quantity~4.1! is a third-order polynomial in
n]. It is worth noting that, since the leading coefficient~3.11!
is independent ofu, it drops from the differenceDn0
2Dn0uu5` of the exactdimensions, and in the leading orde
O(«2) the latter is proportional to the quantityzn introduced
above.

As one can easily see from Fig. 1, the qualitative behav
of zn depends essentially on the values ofn andd. For mod-
eraten and d ~e.g., n54, 6, and 8 ford52 and 3!, finite
correlation time enhances the intermittency~anomalous di-
mensions become more negative! in comparison with both
3-6



-

e

e

a
, c
in
it

s

y

ith

rs
r
s
m

on
a

d

o be
e-

ms

,

e

e
it of

e in

by
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the limits: the rapid-change (u5`) and quenched (u50)
ones. While theO(1/u) correction leads to a smooth de
crease ofzn for increasing 1/u from zero~in agreement with
the numerical simulation of Ref.@14# for a shell model near
the rapid-change limit!, the rapid falloff ofzn is observed for
increasingu from the quenched limitu50. As a result of the
competition between these two effects,zn is not a monoto-
nous function ofu and has a pronounced minimum in th
interval between 0 and 1.

We recall that the slopes of the functionszn at u50 are
infinite in two dimensions for all values ofn due to the
presence of poles (d22) in the O(u) terms in Eqs.~4.5a!
and~4.5c!; see Sec. IV A. Ford.2, the slopes become finit
but they still remain very steep ford53 and lead to a rapid
falloff of zn , as Fig. 1~b! shows. This fact also suggests th
the quenched case, in contrast with the rapid-change one
hardly serve as a good zero-order approximation in study
more realistic models of passive advection by the veloc
field with finite correlation time.

If n or d is large enough, the minimum becomes le
pronounced, the behavior ofzn becomes more regular~e.g.,
n520 for d52) and eventuallyzn becomes a monotonicall
decreasing function ofu (n520 for d53). For such values

FIG. 1. Behavior of the quantityzn from Eq.~4.10! for n54, 6,
8, and 20~from below to above! as a function ofu for d52, 3, 5,
and 10~from the left to the right! in the units of 1023.
03631
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of n or d, the functionzn approaches zero asu→` from
above. In other words, theO(1/u) correction to the rapid-
change limit suppresses the intermittency, in contrast w
the case of moderaten.

In the limit of larged, from Eq. ~4.7! one easily obtains

Dn0
(2)2Dn0

(2)uu5`5
n~n22!~2u11!

4~u11!2d2
1O~1/d3! ~4.11!

@note that theO(n3) term in this approximation disappea
andDn0

(2) becomes only quadratic inn]. One can see that fo
all values ofn, the difference~4.11! is positive, decrease
monotonically whenu grows, and approaches zero fro
above whenu→`.

It should be kept in mind, however, that any conclusi
about the large-n behavior of the exponents, based on
finite-order approximation of the« expansion, can be truste
only if « is small enough, namely«n!1. Like for the rapid-
change case~see, e.g., the discussion in Ref.@7#!, higher-
order terms of the« expansion~3.10! contain additional
powers ofn and the actual expansion parameter appears t
n« rather than« itself. Thus the correct analysis of the larg
n behavior requires resummation of the« series with the
additional condition thatn«.1, but we know of no model in
which such a resummation has been performed.

On the contrary, the analysis of the Feynman diagra
shows that the coefficients in Eq.~3.10! are expandable in
1/d and thus the large-d behavior of the exponents is still in
the realm of application of the« expansion. What is more
for the rapid-change case, the terms of order«2 and higher in
the dimensionDn0 behave asO(1/d2) for larged and there-
fore, has no contribution in theO(1/d) approximation; as a
result, the first order of the 1/d expansion forDn0 is con-
tained completely in the first order of its« expansion; see
Ref. @4#. Our result~4.11! suggests that this is equally tru
for the case of a finite correlation time.

In Ref. @13#, the O(1/u) correction to the rapid-chang
case was derived by the zero-mode techniques in the lim
larged and arbitrary~not small! values of«, for the case of
a local turnover exponent («5h). Although the anomalous
exponents were shown to be nonuniversal~dependent onu),
our results disagree with Ref.@13# in two respects. First, due
to the universality~independence ofu) of the leading term
~3.11!, the ratio~4.11! is of orderO(«2) and notO(«). Sec-
ond, theO(1/u) correction in Eq.~4.11! is positive for alln,
while, according to Ref.@13#, inclusion of the finite correla-
tion time makes the anomalous exponents more negativ
comparison with the rapid-change limit for alln and«. It is
not clear whether this disagreement can be explained
some distinctions between our model~2.3!, ~2.4! and the
velocity ensemble employed in Ref.@13#. It is possible to
show, however, that any modification of the function~2.4!
consistent with the RG analysis performed in Ref.@18# and
Sec. III above leads to a universal~independent ofu) expres-
sion for the leading term inDnl

(1) , so that theO(1/u) correc-
tion to the zero-correlated limit remains of orderO(«2).
3-7
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The changeover from the behavior typical to low spa
dimensions to the behavior described by Eq.~4.11! also pro-
duces interesting patterns, as illustrated by Fig. 1 ford55
and 10.

C. Anisotropic sectors

Let us turn to the analysis of anisotropic contributions
the structure functions~3.6!, ~3.7!, described by the dimen
sions~3.10! with lÞ0. We recall that such contributions ap
pear in the inertial-range expression~3.7! if the forcing Eq.
~2.2! is chosen to be anisotropic, or a constant gradient of
scalar field is imposed.

An important property of the first-order result~3.11! is
that for any fixedn, the quantityDnl

(1) increases monotoni
cally with l @15#. One can say that the exponents, associa
with tensor composite operators~3.9!, exhibit a kind of hier-
archy related to the degree of anisotropy: the less is the
l, the less is the dimension and, consequently, the more
portant is the corresponding contribution to the inertial-ran
expression~3.7!. The leading terms in the even structu
functions ~3.5! are given by the scalar operators~3.9! with
l 50, that is, they are the same as in the model with isotro
forcing ~we recall thatn andl should be simultaneously eve
or odd!.

This behavior is in agreement with the existing pheno
enological ideas, according to which the anisotropy int
duced at large scales by the forcing~boundary conditions,
geometry of an obstacle etc.! dies out when the energy i
transferred down to smaller scales owing to the casc
mechanism@30#. The hierarchy of anisotropic contribution
appears rather universal, being also observed for a ve
~magnetic! field, advected by the Kraichnan velocity e
semble@31#; for the scalar advected by the two-dimension
Navier-Stokes velocity field@32# and for the turbulent veloc
ity field itself @33#.

Nevertheless, the anisotropy survives in the inertial ra
and reveals itself in dimensionless ratios involvingoddstruc-
ture functions,

Rk[S2k11 /S 2
k11/2. ~4.12!

For a number of models it was shown that the skewn
factor R1 decreases down the scales but slower than
dicted by phenomenological theories@5,6#, while the higher-
order odd ratios~hyperskewnessR2 etc.! increase, thus sig
naling persistent small-scale anisotropy@18,19,31,32#. Due
to the aforementioned hierarchy of the dimensions~3.11!, the
leading terms in the odd structure functions~3.5! in our
model are determined by the vector operators~3.9! with l
51, and it is easy to check the above statements from
explicit expression~3.11!.

Of course, theO(«2) contribution~4.1! cannot change al
the above properties of the dimensionsDnl , determined by
their leadingO(«) contribution~3.11!, as far as small value
of « are concerned. However, since the dependence ou
occurs only in theO(«2) contribution, it should be taken into
account if one wishes to discuss how finite correlation ti
affects the hierarchy of the dimensions or the behavior of
dimensionless ratios.
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Consider the effects of the finite correlation time on t
hierarchy of the anisotropic contributions. To this aim, co
sider the difference of the coefficients~4.1! for a fixed value
of n and two neighboring subsequent values ofl,

Dn,l 12
(2) 2Dnl

(2)5
2~2l 1d! Kn~d,u!

~d21!2~d12!2~d14!
,

Kn~d,u![$2~d14!A19~n22!@2B2~d11!C#%.
~4.13!

~we recall that for a fixedn, all possible values ofl are either
even or odd, so that the subsequent values ofl differ by 2!. It
is clear from Eq.~4.13! that the sign and the dependence
u of the whole expression is determined by the behavior
the functionKn(d,u).

In Fig. 2, we plot the quantityKn(d,u) as a function ofu
for n52, 4, 6, and 20~from above to below! for d52 @Fig.
2~a!# and d53 @Fig. 2~b!#. The function is always negative
for all the cases studied and increases monotonically witu.
This behavior persists in the limit of larged, as follows from
the asymptotical expression~4.7!.

We thus conclude that theO(«2) contribution in the exact
dimension~3.10! ‘‘tries to cope’’ with the hierarchy, set by
theO(«) term, for all values ofn, l, d, andu; this effect is at
its strongest foru50 and weakens monotonically asu in-
creases from 0 tò .

Now let us turn to the dimensionless ratiosRk in Eq.
~4.12!. From the discussion below Eq.~4.12! and asymptotic

FIG. 2. Behavior of the quantityKn(d,u) from Eq. ~4.13! as a
function of u for n52, 3, 4, 5, and 6~from above to below! for
d52 ~left! andd53 ~right!.
3-8
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representation~3.6! one obtains the powerlike inertial-rang
asymptotic expressionRk}(mr)D2k11,1 with D2k11,1 from
Eq. ~3.10! ~we recall that in our modelD2,050; see Sec.
IV B !. Due to theu independence of the first-order answ
~3.11!, the O(«) contribution in the exponentD2k11,15«(d
1224k2)/2(d12)1O(«2) coincides with its analog for the
Kraichnan model; see Ref.@5# for k51 and Ref.@19# for
generalk. It completely determines the qualitative behav
of the quantitiesRk : for k51 one hasD3,1.0 and the skew-
ness factorR1 decreases withmr, while for k>1 one has
D2k11,1,0 and the higher-order ratiosRk increase formr
→0.

In Fig. 3, we show the behavior of the second-order c
rection D2k11,1

(2) , obtained from the general formula@Eq.
~4.1!# and divided by (2k11)3 for the even dimensions, as
function ofu for k51, 2, 3, and 4~from below to above! for
d52 @Fig. 3~a!# andd53 @Fig. 3~b!#.

One can see that the effect of theO(«2) correction on the
inertial-range behavior of the ratiosRk is different for dif-
ferent d, k, and u. In two dimensions, the corrections a
negative for allu and moderatek: the decay of the skewnes
factor R1 for mr→0 appears even slower than indicated
theO(«) approximation, while the growth of the ratios wit
k>2 becomes faster.

In three dimensions, the correction is negative fork51 so
that the decayR1 for mr→0 is also slower than in theO(«)
approximation. Fork52, the correction is negative for sma
u ~so that the growth of the hyperskewness factorR2 for
mr→0 is faster than in the first-order approximation!, but it

FIG. 3. Behavior of the quantityjk[D2k11,1
(2) /(2k11)3 from

Eq. ~4.1! as a function ofu for k51, 2, 3, and 4~from below to
above! for d52 ~left! andd53 ~right!, in the units of 1023.
03631
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changes its sign for some finite value ofu and the growth of
R2 slows down. Fork>3, the corrections are negative fo
all u and the growth of the corresponding higher-order rat
Rk appears slower than predicted by theO(«) expression.
One thus may conclude that ford53, with the exception of
thek52 case, the effect of the second-order term is oppo
to the tendency set by the first-order approximation.

For k large enough and anyd, the behavior of the quan
tities D2k11,1

(2) becomes similar to that of the even dimensio
D2k,0

(2) discussed in Sec. IV B: they decrease monotonically
u increases, comparatively fast for smallu ~due to the singu-
larity in the slope ford52; see Sec. IV A! and rather slow
when u becomes large enough. This follows from the fa
that thel-independent contribution in the general express
Dnl

(2) behaves asO(n3) for n→`, while its l-dependent con-
tribution behaves only asO(n); see Eq.~4.1!.

We also note that for moderatek, the quantitiesD2k11,1
(2)

show a nonmonotonous dependence onu in the region of
small u and in this respect they also resemble the even
mensions; see Fig. 1 and the discussion in Sec. IV B.

V. CONCLUSION

We have applied the RG and OPE methods to a sim
model of a passive scalar quantity advected by the synth
Gaussian velocity field with a given self-similar covarian
with finite correlation time. The structure functions of th
scalar field exhibit inertial-range anomalous scaling beh
ior, as a consequence of the existence in the model of c
posite operators with negative scaling dimensions, identi
with anomalous exponents.

For the special case of a local turnover exponent,
anomalous exponents are nonuniversal through the de
dence on a dimensionless parameteru that has the meaning
of the ratio of the velocity correlation time and the sca
turnover time. The universality reveals itself only in the se
ond order of the« expansion, and we have derived the e
ponents to orderO(«2), including anisotropic contributions

It is shown that, for isotropic contributions, the qualitativ
effect of finite correlation time depends essentially on
order of the structure functionn and the space dimensionalit
d. For moderaten andd, finite correlation time enhances th
intermittency in comparison with both the limits: the rapi
change (u5`) and quenched (u50) ones. TheO(«2) term
shows a highly nontrivial behavior in the vicinity of th
quenched limit: a rapid falloff whenu50 increases from
zero, with infinite derivative atu50 for d52, with a pro-
nounced minimum foru;1. This irregularity shows that the
time-independent advecting field can hardly be a reason
approximation in studying more realistic models of pass
advection by the velocity field with finite correlation time
The behavior near the opposite limit,u5`, is smooth in
agreement with the existing simulation for a shell mod
@14#.

The behavior changes remarkably whenn and/or d be-
come large enough: the correction to the limitu5` due to
finite correlation time is positive for allu ~that is, the anoma-
lous scaling is suppressed in comparison with the rap
change case!, it is maximal foru50 and monotonically de-
3-9
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creases to zero asu tends to infinity.
In the anisotropic sectors, theO(«2) terms diminish the

hierarchy revealed by the first-order terms for all values
the parametersn, l, andd; this effect is maximal atu50 and
decreases monotonically with 1/u.

The effect of theO(«2) corrections on the inertial-rang
behavior of the dimensionless ratios involving odd-ord
structure functions depends ond. For d52 and moderatek
these corrections are negative; the decay of the skew
factor R1 for mr→0 is slower while the growth of the
higher-order ratiosRk with k>2 is faster than indicated b
theO(«) approximation by Refs.@5,18#. Ford53, the effect
is, for most cases, opposite to the tendency set by the fi
order approximation: both the decay of the skewness fa
and the growth of the higher-order ratios become slower

Our analysis has been confined within the region of sm
«, where the results obtained within the« expansion are
internally consistent and undoubtedly reliable@we recall
again that, although the leading terms of the anomalous
ponents are of orderO(«), the leading terms in which the
effects of finite correlation time occur are of orderO(«2)].
We do not discuss here the serious issue of validity of th«
expansions for finite«5O(1). One canthink that, in our
model, the natural region of validity of the« expansion is
restricted by the value«51/2, where the velocity field ac
quires negative critical dimension~along with all its powers!
and new IR singularities, related to the well-known sweep
.
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v.

.

la
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tt
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effects, occur in the diagrams; see the discussion in R
@18#. ~It should be noted, however, that such singularities
not necessarily lead to a changeover in the inertial-range
havior, as shown in Ref.@18# for the special case of the
structure functionS2 for u50.) On the other hand,«51/2
can be regarded as the upper bound of the range of val
of the model itself: the lack of Galilean covariance becom
a serious drawback of the synthetic Gaussian velocity
semble when the sweeping effects become important.
next important step should be the analytical derivation
anomalous exponents of a passive scalar advected by
Galilean covariant velocity field; this work is now i
progress.
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